

WP1: Graphenoids

Research strategy and methodology

The main goal of the WP1 is the preparation of ultra-pure and defined graphenoids (graphene, carbon nanotubes – CNTs), their chemical functionalization with covalent links, their structurization and lithographical modifications

The Activity 1.1 deals with optimization of the substrates for native and funcionalized graphene. Our preliminary results show that graphene – copper single crystal interaction depends on the surface face. This motivates further study on copper foil where grains of different orientation can by identified by EBSD. After the transfer process the same place will be identified and the quality of the graphene will be evaluated by number of methods (Raman spectroscopy, SEM, AFM). The realization of the activity 1.1 will enable to discover relation between copper – graphene interaction and the success of the transfer process. The activity 1.1 is directly connected to WP3, WP4 and WP5.

The Activity 1.2. aims at preparation of ultra-pure graphenoids (graphene, CNT) and their covalent chemical functionalization. The purification methods applied on CNT will be based on our previous experiences and will be optimized for specific samples used in the project. We have previously demonstrated that graphene can be modified by different type of reactions (radical, nucleophilic and electrophilic substitutions), which provides large set of options for specific desired modification of graphenoids. As for the linkages, for example reversible amine-aldehyde condensation or alkyne-azide Huisgens dipolar cycloaddition are proposed for covalently dynamic or rigid cross-linking, respectively.

Fig. 8: Types of chemical reactions to introduce the corresponding functional groups

Introduction of the corresponding functional groups will be achieved via several types of reactions (see **Chyba! Nenalezen zdroj odkazů.**) which offers broad range of chemical compatibility between the introduced chemical moieties and the functionalization conditions. Functionalized graphenoids will be further used in WP3 and WP4 to study interactions with diamond particles and to prepare hybrid materials. Furthermore, in WP4 and WP5 the functional layers will be tested for sensing properties.

The Activity 1.3 deals with lithographic structuring of graphenoids and substrates for their growth. The lithography is very useful method to provide fine topographic structures. In case of copper substrate, the lithography will enable to create specific periodic shapes on a microscale. The modification of the topography will be made before growth of the graphene; thus the graphene growth on periodic structures can be tested. In addition, the lithography will be combined with anisotropic chemical etching reactions.

For application in microelectrodes or microsensors graphene needs to be patterned. The lithography is the obvious option as it is well established and scalable. In case of graphene there are some challenges which include, avoiding the graphene damage and /or modification during the lift off or etching process. Different resists and etching procedures will be tested to find optimum conditions for production of unperturbed patterned structures. The prepared samples will be further used in WP3 for preparing patterned hybrid structures and in WP4 and WP5 for fabrication of sensors and homo-composites.

WP1:	Graphenoids									
Objectives										
 Topographic and structural optimization of substrates for native and functionalized graphene for tunable adhesion. Optimization of purification and chemical functionalization of graphenoid carbons for effective mutual linkage. Optimization of lithographic procedures for fine structuring of graphene and substrates. 										
Activities										
A1.1.: Topographic a structural optimization of substrates Duration: M1 – M48										
Duration	uration Task description									
M1-M18	Growth of graphene by Low pressure CVD on copper foil and copper single crystals.	UFCH, TESLA								
M12-M36	2-M36 Topographic modification of the copper substrate using DND. Characterisation of the modified substrates using AFM, XPS. Growth of graphene on topographically modified copper substrate.									
M6-M42	vl6-M42 Identification of the surface phase orientation of copper substrate under CVD grown graphene using EBSD,									

	determination of the interaction using Raman spectroscopy, AR PES.	
M9-M36	Transfer of graphene and determination of the surface face orientation on the transferred graphene. Measurement of SEM, EBSD, Raman spectroscopy, AFM.	UFCH, FZU, TESLA, MFF UK
M18-M48	Transfer of graphene and determination of the surface topography modification on transferred graphene. Measurement of SEM, EBSD, Raman spectroscopy, AFM.	UFCH, FZU, TESLA, MFF UK
Milestone MS1.1 i	UFCH, FZU, TESLA. MFF UK	
Milestone MS1.1 i copper substrate fo	UFCH, FZU, TESLA, MFF UK	
Deliverable D1.1 in process on surface of	UFCH, FZU, TESLA, MFF UK	
Deliverable D1.2 in	UFCH, FZU, TESLA MEELIK	
A1.2.: Chemical fun Duration: M1 – M4		
Duration	Task description	Groups involved
M1-M9	Design, formulation and synthesis of linker molecules with the ability to be covalently linked to sp^2 carbon networks.	UFCH, UOCHB
M1-M9 M2-M18	Design, formulation and synthesis of linker molecules with the ability to be covalently linked to sp^2 carbon networks. Purification and testing of CNT purchased from commercial suppliers - in gas phase (thermooxidative treatment, hot steam treatment, alkyl metal treatment, vacuum high temperature annealing) and evaluation of the most effective route(s).	UFCH, UOCHB UFCH, TESLA
M1-M9 M2-M18 M4-M24	Design, formulation and synthesis of linker molecules with the ability to be covalently linked to sp^2 carbon networks. Purification and testing of CNT purchased from commercial suppliers - in gas phase (thermooxidative treatment, hot steam treatment, alkyl metal treatment, vacuum high temperature annealing) and evaluation of the most effective route(s). Analysis of the purified testing CNT, identification of the important impurities and monitoring of the effect of purification on diameter distribution, defect creation and electronic properties of CNT (Raman spectroscopy, TG, UV-ViS spectroscopy, ICP MS, XPS, SEM, EDX) and magnetic characterisation.	UFCH, UOCHB UFCH, TESLA UFCH, MFF UK, UOCHB
M1-M9 M2-M18 M4-M24 M2-M18	Design, formulation and synthesis of linker molecules with the ability to be covalently linked to sp^2 carbon networks. Purification and testing of CNT purchased from commercial suppliers - in gas phase (thermooxidative treatment, hot steam treatment, alkyl metal treatment, vacuum high temperature annealing) and evaluation of the most effective route(s). Analysis of the purified testing CNT, identification of the important impurities and monitoring of the effect of purification on diameter distribution, defect creation and electronic properties of CNT (Raman spectroscopy, TG, UV-ViS spectroscopy, ICP MS, XPS, SEM, EDX) and magnetic characterisation. Activation of graphenoid carbons by simple molecules- oxidation, fluorination and hydrogenation. Characterization of the functionalized graphenoids by surface sensitive methods (Raman spectroscopy, AFM, XPS, TPD, SEIRA, MS).	UFCH, UOCHB UFCH, TESLA UFCH, MFF UK, UOCHB UFCH, UOCHB, MFF UK

M12-M42	Functionalization of pristine/ prefunctionalized graphene on specific substrates (topographically modified copper) with linker molecules such as amines, aldehydes, alkynes and azides for covalently dynamic cross-linking or Huisgens dipolar cycloaddition.	UFCH, UCHB					
MM16-M42	Characterization and analysis of the functionalized CNT by Raman spectroscopy, TG, UV-ViS spectroscopy, ICP MS, XPS, SEM, EDX. Electrical measurements and microscopic measurements (AFM, HR TEM).	UFCH, UCHB, ZCU					
M16-M48	Characterization and analysis of the linker molecules functionalized graphene by Raman spectroscopy, AFM, XPS, TPD, SEIRA, MS, optical spectroscopy incl. ellipsometry, contact angle), electrical measurements of conductivity	UFCH, UCHB, MFF UK, ZCU					
Milestone MS1.3 ir of CNT.	n M24: Optimized methodology for effective purification	UFCH, MFF UK, UOCHB, TESLA					
Milestone MS1.4 in graphenoid carbons	UFCH, UCHB, MFF UK, ZCU						
Deliverable D1.3 in for efficient purifica	UFCH, MFF, UOCHB, TESLA						
Deliverable D1.4 in for functionalizatior	UFCH, UCHB, MFF UK, ZCU						
A1.3. Lithographic structuring of graphenoids and substrates Duration: M13 – M48							
Duration: M13 – M	48						
Duration: M13 – M Duration	48 Task description	Groups involved					
Duration: M13 – M Duration M1-M12	48 Task description Design of basic structures and corresponding photolithographic masks.	Groups involved UFCH, FZU, ZCU					
Duration: M13 – M Duration M1-M12 M3-M36	48 Task description Design of basic structures and corresponding photolithographic masks. Preparation of electrodes from graphene on Si/SiO ₂ substrate.	Groups involved UFCH, FZU, ZCU UFCH, FZU, TESLA					
Duration: M13 – M Duration M1-M12 M3-M36 M6-M24	48 Task description Design of basic structures and corresponding photolithographic masks. Preparation of electrodes from graphene on Si/SiO ₂ substrate. Lithographic topography modification of the copper substrate.	Groups involved UFCH, FZU, ZCU UFCH, FZU, TESLA UFCH, FZU,Tesla					
Duration: M13 – M Duration M1-M12 M3-M36 M6-M24 M6-M48	48 Task description Design of basic structures and corresponding photolithographic masks. Preparation of electrodes from graphene on Si/SiO ₂ substrate. Lithographic topography modification of the copper substrate. Characterisation of the topography of lithographically modified graphene AFM, SEM, electrical measurements.	Groups involved UFCH, FZU, ZCU UFCH, FZU, TESLA UFCH, FZU,Tesla UFCH, FZU, MFF UK, ZCU					
Duration: M13 – M Duration M1-M12 M3-M36 M6-M24 M6-M48 M9-M30	48 Task description Design of basic structures and corresponding photolithographic masks. Preparation of electrodes from graphene on Si/SiO ₂ substrate. Lithographic topography modification of the copper substrate. Characterisation of the topography of lithographically modified graphene AFM, SEM, electrical measurements. Characterisation of the topography of lithographically modified substrates by AFM, SEM, XRD.	Groups involved UFCH, FZU, ZCU UFCH, FZU, TESLA UFCH, FZU,Tesla UFCH, FZU, MFF UK, ZCU UFCH, FZU, MFF UK					
Duration: M13 – M Duration M1-M12 M3-M36 M6-M24 M6-M48 M9-M30 M18-M46 M18-M46	 Task description Design of basic structures and corresponding photolithographic masks. Preparation of electrodes from graphene on Si/SiO₂ substrate. Lithographic topography modification of the copper substrate. Characterisation of the topography of lithographically modified graphene AFM, SEM, electrical measurements. Characterisation of the topography of lithographically modified substrates by AFM, SEM, XRD. Optimization of the lithography protocol for obtaining graphene microelectrodes. 	Groups involved UFCH, FZU, ZCU UFCH, FZU, TESLA UFCH, FZU, FZU,Tesla UFCH, FZU, MFF UK, ZCU UFCH, FZU, MFF UK UFCH, FZU, TESLA					
Duration: M13 – M Duration M1-M12 M3-M36 M6-M24 M6-M48 M9-M30 M18-M46 Milestone MS1.5 i copper substrate na	48 Task description Design of basic structures and corresponding photolithographic masks. Preparation of electrodes from graphene on Si/SiO ₂ substrate. Lithographic topography modification of the copper substrate. Characterisation of the topography of lithographically modified graphene AFM, SEM, electrical measurements. Characterisation of the topography of lithographically modified substrates by AFM, SEM, XRD. Optimization of the lithography protocol for obtaining graphene microelectrodes. n M24: Methodology for lithographical modification of anotopography.	Groups involved UFCH, FZU, ZCU UFCH, FZU, TESLA UFCH, FZU, FZU,Tesla UFCH, FZU, MFF UK, ZCU UFCH, FZU, MFF UK UFCH, FZU, TESLA UFCH, FZU, ZCU					
Duration: M13 – M Duration M1-M12 M3-M36 M6-M24 M6-M48 M9-M30 M18-M46 Milestone MS1.5 i copper substrate na Milestone MS1.6 modification of grap	48 Task description Design of basic structures and corresponding photolithographic masks. Preparation of electrodes from graphene on Si/SiO ₂ substrate. Lithographic topography modification of the copper substrate. Characterisation of the topography of lithographically modified graphene AFM, SEM, electrical measurements. Characterisation of the topography of lithographically modified substrates by AFM, SEM, XRD. Optimization of the lithography protocol for obtaining graphene microelectrodes. n M24: Methodology for lithographical modification of anotopography. in M46: Optimized methodology for lithographical ohene.	Groups involved UFCH, FZU, ZCU UFCH, FZU, TESLA UFCH, FZU, FZU, Tesla UFCH, FZU, MFF UK, ZCU UFCH, FZU, MFF UK UFCH, FZU, TESLA UFCH, FZU, ZCU UFCH, FZU, ZCU					

Deliverable D1.6 in preparation of grap	UFCH, FZU MFF UK, ZCU										
Milestones											
No.	Month	Description									
MS1.1	M36	Identified optimum surface orientation of the copper substrate for graphene transfer.									
MS1.2	M48	Identified optimum surface topography of the copper substrate for graphene transfer.									
MS1.3	M24	Optimized methodology for effective purification of CNT.									
MS1.4	M42	Optimized methodology for functionalization of graphenoid carbons.									
MS1.5	M24	Methodology for lithographical modification of copper substrate nanotopography.									
MS1.6	M46	Optimized methodology for lithographical modification of graphene.									
Deliverables											
No.	Month	Description									
D1.1	M38	Summary report on the dependence of transfer process on surface orientation of the copper substrate.									
D1.2	M48	Summary report on the dependence of transfer process on surface topography of the copper substrate.									
D1.3	M24	4 Summary report on optimization of methodology for efficien purification of CNT.									
D1.4	M42	Summary report on optimization of methodology for functionalization of graphenoid carbons.									
D1.5	M36	Summary report on methodology for lithographical modification of copper substrate nanotopography.									
D1.6	M48	Summary report on methodology for lithographical preparation of graphene microelectrodes on Si/SiO ₂ substrate.									

WP1 GANTT Chart														
	2018		2019		202		20		2021		 202:		2	
A1.1.: Topographic and structural optimization of substrates						ľ								
Growth of graphene by Low pressure CVD.					ľ			_	-					
Topographic modification of the copper substrate using DND.														
Identification of the surface phase orientation of copper substrate under CVD grown graphene using EBSD.														
Transfer of graphene and determination of the surface face orientation on the transferred graphene.														
Transfer of graphene and determination of the surface topography modification on transferred graphene.														
A1.2.: Chemical functionalization and purification of graphenoid carbons					Ĵ									
Design, formulation and synthesis of linker molecules.														
Purification and testing of CNT purchased from commercial suppliers - in gas phase.							Į.		Ĵ					
Analysis of the purified testing CNT.														
Activation of graphenoid carbons by simple molecules.														
Functionalization of pristine/ pre functionalized CNT with linker molecules.														
Functionalization of pristine/ prefunctionalized graphene on specific substrates.														
Characterization and analysis of the functionalized CNT by linker molecules.														
Characterization and analysis of the linker molecules functionalized graphene.					į.									
A1.3. Lithographic structuring of graphenoids and substrates														
Design of basic structures and corresponding photolithographic masks.										-		-		
Preparation of electrodes from graphene on Si/SiO ₂ substrate.														
Lithographic topography modification of the copper substrate.														_
Characterisation of the topography of lithographically modified graphene AFM, SEM, electrical measurements.														
Characterisation of the topography of lithographically modified substrates by AFM, SEM, XRD.														
Optimization of the lithography protocol for obtaining graphene microelectrodes.														