MAGNETIC RESONANCE

ÚOCHB 🖁 🥒 IOCB PRAGUE

23/9/2021 lecture hall

Program, NMR Spectroscopy Group

PROGRAM

9:30-10:30 Introduction Variable-temperature NMR experiments NMR spectroscopy with in situ irradiation Solid-state NMR spectroscopy

10:30-11:00 Coffee break

- **11:00–12:05** ³H NMR of radioactive samples (300MHz NMR spectrometer) NMR-based structural biology (850MHz NMR spectrometer) EPR Spectroscopy
- 12:05-14:00 Lunch break
- 14:00-14:45 User meeting of the NMR self-service facility
- 14:45-15:00 Coffee break
- **15:00–16:00** Tips and tricks for structural analysis Tips and tricks for spectral processing with MNova

NMR Spectroscopy Group – Equipment

• Self-service measurements: 2 × 400MHz spectrometer

• NMR spectrometers with cryoprobes: 1 × 600MHz and 1 × 500MHz spectrometer

NMR Spectroscopy Group – Equipment

• Versatile NMR spectrometers: 2 × 500MHz spectrometer (temperature, F decoupling)

• Solid-state NMR: 1 × 600MHz

• EPR spectroscopy

NMR Spectroscopy Group – Cryoprobes

- NMR signal detected as electric current
- Electronic noise: in any conductor (NMR coils, wires)
- Lower temperature lower electronic noise
- Helium-gas cooled probes
 - ✤ 4–5 × higher sensitivity

- Expensive
- Regular maintenance necessary
- Nitrogen-liquid cooled probes (PRODIGY)

2 × higher sensitivity

NMR Spectroscopy Group – Contacts

Building A1 – NorthEast wing

NMR senior staff ٠

Martin Dračínský

Radek Pohl

Miloš Buděšínský

David Šaman (emeritus)

Lenka Poštová Slavětínská

Eliška Procházková

EPR senior staff •

Ján Tarábek

400MHz maintenance

Ondřej Socha

Jakub Štoček

Variable Temperature NMR

- solubility issues 1
- broad NMR signals -simplifying spectrum for easier analysis
- monitoring of reaction kinetics at various temperatures slowing down or speeding up the reaction rate
- structure determination of metastable compounds
- study of chemical exchange (conformation, restricted rotation, tautomerism, hydrogen bonding, complexation...)

Chemical Exchange: any process in which a nucleus exchanges between two or more environments and results in a change in NMR parameters (chemical shift, coupling constant, and/or relaxation rate).

VT NMR instrumentation at IOCB

name (location) magnet (¹H freq.) console probehead probe temp. limits VT range A601 (A.1.58) Bruker (600.1 MHz) Bruker Avance III HD 5 mm TCI cryo ¹H/¹³C/¹⁵N -40 to +170 °C +5 to +120 °C J600 (A.1.63) JEOL (600.2 MHz) JEOL EZC600R 3.2 mm HX MAS -100 to +200 °C -100 to +200 °C J500 (A.1.63) JEOL (500.2 MHz) JEOL EZC500R 5 mm ROHFX -100 to +150 °C -100 to +150 °C A501 (A.1.60) Bruker (500.0 MHz) Bruker Avance III HD 5 mm CPBBO cryo 0 to +135 °C +5 to +120 °C **U500** (A.1.62) Oxford (499.9 MHz) Bruker Avance II 5mm TBO BB/¹H/¹⁹F -150 to +150 °C -**150 to +150 °C**

Initial consideration

- solubility of your compounds at given temperature
- boiling/melting point of used solvent (or solvent mixture)
- NMR temperature calibration
- magnetic field homogeneity at given temperature

J. Am. Chem. Soc., 2002, 124, 6206.

Other mixtures:

```
CD_2Cl_2/CHFCl_2/CHF_2Cl
CD_2Cl_2/Me_2O
DMF-d_7/CD_2Cl_2
```

-165 °C Organomatallics, **2013**, *32*, 6996. -153 °C J. Org. Chem., **2007**, *72*, 2003. -125 °C Chem. Eur. J., **2018**, *24*, 492.

special NMR tubes

NMR lab

Example – broad signals

Example - two sets of signals

http://u-of-o-nmr-facility.blogspot.com/2014/03/variable-temperature-to-improve-nmr.html

Example – sucrose exchangeable protons

Example - helquat racemization

Example - helquat racemization

NMR spectroscopy with *in situ* irradiation

NMR spectroscopy with *in situ* irradiation

- Useful tool for photochemical processes
- Samples are irradiated by LED lamp directly inside the NMR tube
- Detection and characterization of metastable forms using advanced NMR methods (¹³C, ¹⁵N, 2D experiments with longer measurement time)
- Variable temperature NMR measurements

- No special NMR probe is essential
- No special safety rules
- Variety of LED lamps (λ) available

- Comfortable LED changing (for λ_1/λ_2 photoswitching)
- Universal usage for all spectrometers (including EPR spectrometer)

Experimental setup

- Implemented at IOCB in 2017
- Device from Thorlabs, Germany

LED driver

- Suitable for LED with 280–1050 nm
- Level of brightness
- Pulse modulation
- TTL modulation triggering directly in the pulse sequence

LED lamp

- Different λ available
- At IOCB we have so far:

365 nm 405 nm 470 nm 505 nm 660 nm

Structural and kinetic information extracted

Suitable for fast photoreactions

• A second time-scale reactions

OCB PRAGUE

Light intensity modulation

- At 25 °C, no spectral changes were found
- At –105 °C, significant changes in NH region: Rotamer ratio changes significantly upon irradiation, no *cis* isomer detected
- Photoswitchable intramolecular hydrogen bonds revealed

- Upon irradiation at 405 nm (–105 °C), only OCH₃ derivative provided *cis* isomer
- *Cis* isomer of OCH₃ derivative is the most stable
- H-bonds definitely do not lock the *cis* isomer formation

Photoswitching by two wavelengths

- Upon visible light irradiation (460 nm), only 60% of *trans* isomer is obtained.
- Both isomers absorb at 460 nm

Čechová L., Kind J., Dračínský M., Filo J., Janeba Z., Thiele C., Cigáň M., Procházková E.: J. Org. Chem. 2018, 83, 5986-5998.

Procházková E., Šimon P., Straka M., Filo J., Májek M., Cigáň M., Baszczyňski O.: Chem. Commun. 2021, 57, 211–214.

Solid-state NMR spectroscopy

 $(3\cos^2\theta - 1)$

Gee et al. J. Phys. Chem. A 2000, 104, 4598.

¹³C{¹H} NMR spectrum of solid glycine (powder)

 $(3\cos^2\theta - 1)$

¹³C{¹H} MAS NMR spectrum of solid glycine

Direct spin-spin interaction (dipolar coupling)

- Depends on gyromagnetic ratio γ and internuclear distance
- C-H ≈ 25 kHz
- High power decoupling

Quadrupolar coupling

- Nuclei with / > 1/2 (e.g. ²H, ¹⁴N, ¹⁷O, ²³Na, ³⁵Cl)
- ≈ MHz

Quadrupolar coupling C_Q ~ 200 kHz (typical value for O-D groups)

SS-NMR at IOCB

Bruker Avance II 500 MHz spectrometer 3.2 mm MAS probe

JEOL ECZ600R

600 MHz spectrometer

3.2 mm and 1 mm MAS probes

Installed in 2018

Polymorphism

Pseudopolymorphism

Multicomponent pharmaceutical solids

- Improved solubility, stability, bioavailability, pharmaceutical compatibility
- To determine the salt/co-crystal structure is challenging for X-ray
- Legal and regulatory issues (intellectual property)

¹³C{¹H} MAS (18 kHz) NMR spectra

¹H-¹³C correlation (HSQC-like), MAS (70 kHz)

¹H-¹⁴N correlation (through-space), MAS (70 kHz)

Variable-temperature ¹H MAS (18 kHz) NMR spectra

- Variable-temperature NMR spectroscopy
- NMR spectroscopy with *in situ* irradiation
- Solid-state NMR spectroscopy

State-of-the-art instrumentation available at IOCB

New internal collaborations are welcome