

# 300 MHz NMR Bruker Avance II



Aleš Marek | September 23<sup>rd</sup> 2021

# <sup>3</sup>H characteristics

| Isotope            | Natural<br>abundance<br>(%) | Nuclear<br>spin | Magnetogyric<br>ratio | Resonance<br>freq<br>MHz at 7T | Relative<br>sensitivity | Half-life | Radiation | E max<br>(MeV) |
|--------------------|-----------------------------|-----------------|-----------------------|--------------------------------|-------------------------|-----------|-----------|----------------|
| 1H                 | 99.984                      | 1/2             | 26.75                 | 300                            | 1.0                     | -         | stable    | -              |
| <sup>2</sup> H (D) | 0.156                       | 1               | 4.11                  | 46                             | 9.65×10 <sup>-3</sup>   | -         | stable    | -              |
| <sup>3</sup> H (T) | <10 <sup>-16</sup>          | 1/2             | 28.53                 | 320                            | 1.21                    | 12.32 y   | β-        | 0.018          |

| Some properties of tritium ( <sup>3</sup> H) and related information |                                                                                                                                      |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Mass:                                                                | 3                                                                                                                                    |  |  |  |  |
| Radiation:                                                           | Beta (100% abundance)                                                                                                                |  |  |  |  |
| Decay product (stable):                                              | [ <sup>3</sup> He]helium                                                                                                             |  |  |  |  |
| Discovered                                                           | 1934 (Ernest Rutherford, Mark Oliphant, and Paul Harteck)                                                                            |  |  |  |  |
| Biological T½:                                                       | 10 - 12 days<br>* Large liquid intake (3-4 liters/day) reduces effective T½ by a<br>factor of 2+; 3H is easily flushed from the body |  |  |  |  |
| Specific Activity:                                                   | 2.58 Ci/mL T <sub>2</sub>                                                                                                            |  |  |  |  |
|                                                                      | 29.1 Ci/milliatom                                                                                                                    |  |  |  |  |
| Beta Range:                                                          | Air: 6 mm [0.6 cm; 0.25 inches]                                                                                                      |  |  |  |  |
|                                                                      | Water: 0.006 mm [0.0006 cm; 3/10,000 inches]                                                                                         |  |  |  |  |
|                                                                      | Solids/Tissue: insignificant [No <sup>3</sup> H betas pass through the dead layer of skin]                                           |  |  |  |  |

# Why <sup>3</sup>H NMR spectra?

#### **APPLICATIONS of <sup>3</sup>H NMR spectra**

- ✓ To analyze the **patterns of labeling** in tritium labeled compounds
- ✓ Reveal the **position and extend** of tritium labeling
  - to avoid labeling in hydrogen exchangeable positions (e.g., acid hydrogen, alpha carbon in carbonyl compounds, etc.)
- ✓ Determine **specific activity**, purity and identity

#### ADVANTAGES of <sup>3</sup>H nuclei in NMR studies

- Tritium is an ideal nuclide for high resolution NMR studies its nucleus, the triton, like the proton has a nuclear **spin of** ½ and its high magnetogyric constant gives it a **higher sensitivity** to detection than any other nucleus, including proton by the factor of **1.21**
- Tritium which have practically zero natural abundance do not suffer from any background signals or interfering solvent signals from non-tritiated species.
- Because of chemical shifts of the tritium nuclei are the same as those of proton nuclei -> proton chemical shifts can be applied directly to the interpretation of tritium spectra.

## Historical perspectives of <sup>3</sup>H NMR:

- The fundamental magnetic properties of tritium (<sup>3</sup>H) were first reported in **1947** in a series of NMR measurements which demonstrated the triton to be a **spin 1/2** nucleus, with a **positive magnetic moment about 6.66 %** larger than that of the proton.
- 1947 the <sup>3</sup>H nmr signal of tritiated water was observed (x100 <u>Ci</u> employed, custom build instrument – 30 MHz)

Multi-Curie quantities in high-speed glass tubes in very expensive nmr spectrometers discourages any rapid development of the technique... only **24 reports of tritium spectra in the first 30 years**, and 14 of those were published in the period 1974-1976.



Figure 6. Details concerning microcells for <sup>3</sup>H nmr spectroscopy: (a) spherical cell, chuck and insertion tool; (b) nmr tube containing cylindrical microcell; (c) preferred 3 mm tube, as for filling; (d) 3 mm sample tube mounted in 5 mm nmr tube.

- 1964 first <sup>3</sup>H nmr of a tritiated organic compound neat sample of [*side-chain-*<sup>3</sup>H]ethylbenzene (32.1 Ci/mL, Varian A-40, 40 MHz)
- 1968-1971 practical evaluation into a *safe routine*, it became obvious that only millicurie (<u>mCi</u>) amounts of radioactivity were needed. (PerkinElmer R-10, 64 MHz)

Lit: Kubinec M.G, Williams P.G, Tritium NMR, Lawrence Berkley National Laboratory, **1994**, John Wiley and Sons, Ltd., Evans E.A. et al., Handbook of Tritium NMR Spectroscopy and Application, **1985**, John Wiley & Sons Ltd.

#### **Key Specifications**

- Resonance frequency: 300 MHz for <sup>1</sup>H
- UltraShield 7 T superconducting magnet (Bruker)
- Variable temperature measurements from +20 °C
- Software Topspin 2.0
- Magnet installed in 2006

#### **Probes for liquid samples**

- dual probe: 5 mm DUX <sup>3</sup>H-<sup>1</sup>H/D Z-GRD Z6889/0004
- broad-band probe: 5 mm BBO BB-<sup>1</sup>H/D Z-GRD Z8284/0937

#### Location, Responsible person

- Synthesis of Radiolabeled Compounds, A.3.75, Supervised area
- dr. Břetislav Brož







<sup>&</sup>lt;sup>3</sup>H-<sup>1</sup>H NMR of [<sup>3</sup>H]EM17 (10 mCi, CD<sub>3</sub>OD)





prof. Marek Jindra, CSc. Biology Center ASCR České Budějovice

Dr. Ivan Šnajdr IOCB

**<sup>3</sup>H-<sup>1</sup>H NMR** spectrum (320.1 MHz, CDCl<sub>3</sub>) the **hot** [<sup>3</sup>H]-AN-1-099.

Dr. Břetislav Brož IOCB

<sup>1</sup>**H NMR** spectrum (300.1 MHz, CDCl<sub>3</sub>) the **hot** [<sup>3</sup>H]-AN-1-099.

 $\Rightarrow$  **Specific activity** = SA<sub>NMR</sub>

 $\Rightarrow$  (2.00-1.09)×29.1 = <u>26.5 Ci/mmol (0.91 T)</u>

 $(SA_{MS} = 26.1 \text{ Ci/mmol})$ 

**<sup>1</sup>H NMR** spectrum (400.1 MHz, CDCl<sub>3</sub>) the **unlabeled** [<sup>1</sup>H]-AN-1-099.



8

### Sensitivity of <sup>3</sup>H-nuclei in NMR

<sup>3</sup>H{<sup>1</sup>H} NMR spectra, Bruker Avance II 300 MHz, 320.13 MHz, 25 °C





**15 mCi**, approx. **200 \mug** 500  $\mu$ L MeOD, <u>NS = 64</u>, LB = 0.5; time of the experiment: 5 min 20 s

**500 μCi**, approx. **7 μg** 450 μL MeOD, <u>NS = 8192</u>, LB = 0.5; time of the experiment: 11 h 23 min

**100 µCi**, approx. **1.5 µg** 450 µL MeOD, <u>NS = 12288</u>, LB = 1.0; time of the experiment: 17 h 5 min







# Better safe than sorry: handling significant amount of radioactivity...

PRECAUTIONS IN TRITIUM HANDLING





Figure 3.5. Filtration of a tritiated compound. Note the operation over a spill tray



In IOCB about these days... ©

### **Chapter 3: PRECAUTIONS IN TRITIUM HANDLING**

Evans E. A., Tritium and its Compounds, **1974**, Butterworth & Co (Publishers) Ltd

# Summary

- high sensitivity of detection of the <sup>3</sup>H nucleus only reasonably small amount of radioactivity
  (0.1 mCi to 10 mCi per site, 3.7 to 370 MBq) to give a well-defined spectrum
- ✓ proton chemical shifts can be applied directly to the interpretation of tritium spectra
- ✓ pattern of <sup>3</sup>H-labeling
- ✓ quantitative distribution
- ✓ specific activity (SA)
- ✓ purity and identity of synthesized <sup>3</sup>H-tracer

## Aleš Marek

23<sup>rd</sup> 2021

# Synthesis of radiolabeled compounds

# Thank you for your attention.



