

 \land

Electron Paramagnetic Resonance (EPR) at IOCB

Recent Case Studies & Future Instrumental Upgrades

EPR/NMR Essentials (Comparison)

Paramagnetic Materials / Introduction

Simplified Scheme of Hydrogen Peroxide & ROS^a

A **a ROS** \equiv Reactive Oxygen Species

C K. Krumova & G. Cosa, Overview of ROS in Singlet Oxygen: Applications in Biosciences and Nanosciences 2016, 1, pp. 1-21

Paramagnetic Materials / Overview

NMR SPECTROSCOPY

 \mathcal{N}

Magnetic Resonances NMR/EPR

Common Features & Differences / Magnetism & Magnetic Resonance

 $\vec{B}_0 \Rightarrow$ external magnetic flux density/field $\vec{M} \Rightarrow$ magnetization $\nu_p (\nu_e) \Rightarrow$ matching frequency for protons (electrons)

Magnetic Resonances NMR/EPR

Common Features & Differences / Energies & Population Difference

Proton (NMR)

$$egin{aligned} \Delta arepsilon_{\mathrm{p}} &= h
u_{\mathrm{p}} \ &= g_{\mathrm{p}} \hbar \gamma_{\mathrm{p}} B_0(\mathrm{NMR}) \end{aligned}$$

 $egin{aligned} & ext{for} \
u_{ ext{p}} &= 600 \ ext{MHz} \ B_0(ext{NMR}) &= 14.0919 \ ext{T} \ N_{ert eta
angle} / N_{ert lpha
angle} &= 99.990 \ \% \ (T = 298 \ ext{K}) \end{aligned}$

Electron (EPR)

 $egin{aligned} \Delta arepsilon_{ ext{e}} &= h
u_{ ext{e}} \ &= g_{ ext{e}} \hbar \gamma_{ ext{e}} B_0(ext{EPR}) \end{aligned}$

 $egin{aligned} & ext{for} \
u_{ ext{e}} &= 9.8 \, ext{GHz} \ B_0(ext{EPR}) &= 0.3497 \, ext{T} \ N_{|lpha
angle}/N_{|eta
angle} &= 99.842 \, \% \ (T = 298 \, ext{K}) \end{aligned}$

CW^b Spectrometer Detailed View & **EPR Spectrum**

Microwave Bridge and Magnet

Origin of Signal/Spectrum

 \triangle **b CW** \equiv Continuous Wave => $\nu_{\rm e} = {\rm const.}$ $B_0 \neq {\rm const.}$

NMR SPECTROSCOPY

Structural Information from EPR

Splitting of the NMR/EPR Spectra (Nu-Nu/e-Nu Interactions)

Structural Information from EPR

Example of **e-¹H** Interaction (Energies **ε**)

 $g \mu_{\rm B} \left(B_{i+1} - B_i \right) = g \mu_{\rm B} \, a_{\rm H} \, \left({
m Splitting \ const.} \right) = A_{\rm H}^{\varepsilon} \, \left({
m Coupling \ const.} \right)$

$$egin{aligned} & [a] = \mathrm{mT} \ \mathrm{(G)} \ & A^arepsilon & \Rightarrow A^arepsilon / h \Rightarrow [A] = \mathrm{MHz} \end{aligned}$$

Structural Infromation from EPR

Example of Complex **e**-¹**H**-¹⁴**N** Interaction/**Splitting**

* Interaction/Splitting from $t - \mathbf{butyl} \& - \mathrm{CH}_3$ can be neglected

 \mathcal{N}

Structural Infromation from EPR

Analysis of EPR Spectra^{c,d,e}

^c
 ^c
 ^c F. Neese, *Curr. Opin. Chem. Biol.* 2003, 7, pp. 125-135
 ^d
 ^d
 ^d
 ^c J. Tarábek , *J. Org. Chem.* 2018, 83, pp. 5474-5479
 ^e see also: ^c easyspin.org

Practical Aspects of EPR

EPR/NMR Spectrometers / Comparison

NMR SPECTROSCOPY

M

EPR Facilities

Tubes/Cells for Liquid/Solid Samples^{f,g} vs Temperature^h

^f $\downarrow c$ region from 0.01 μ M to 50 mM ($\Box V$ from 50 μ l to 1 ml) ^g \Box Powder m from 1 mg to 50 mg ^h b T from 80 K to 500 K

EPR Facilities

Coupled Methods/Generation of Paramagnetic Species

Electrochemistry

Spin Trapping

Photochemistry

Case Studies

- In situ EPR Electrochemistry

In situ EPR Photochemistry with Spin Trapping

EPR Spectroelectrochemistry

Stability of the Electrochemically Generated BC Radical Cation

Nuclei	$A^{ m Sim}~(m MHz)$	$A^{ m DFT}~(m MHz)$
$1 imes {}^{14}\mathrm{N}$	24.172	21.267
$3 imes~^1{ m H}$	6.768	6.950
$3 imes~^1{ m H}$	5.825	4.719
$3 imes~^1{ m H}$	2.673	3.817
$3 imes~^{79,81}{ m Br}$	1.820	2.036

Comparison of experimental and simulated EPR spectra of **"Blues Cousin"(BC)**, radical cation.

ⁱ Cooperation with the Group of T. Slanina (D. Hidasová, RP)
 ^j PBE0/EPR-II(C,H,N)/def2-TZVPD(Br)//B3LYP/6-31G(d,p)//C-PCM(CH₂Cl₂)

EPR Spectroelectrochemistryⁱ

Stability of the Electrochemically Generated BC Radical Cation

"Top-view" of EPR spectra recorded during kinetic stability experiment of the BC^{ullet+} .

BC^{•+} decay^k just after the *in situ* electrochemical generation.

ⁱ Cooperation with the Group of *T. Slanina* (A *D. Hidasová*, RP) ^k units => "p.d.u." $\equiv \swarrow$ procedure defined unit (see IUPAC)

EPR Photochemistry

Detection of Transient Radicals by Spin Trapping upon Continuous Sample Irradiation (by 448 nm LED)^m

^I Cooperation with the Group of U. Jahn (🙈 Ch. Pramthaisong, RP)

^m Additional **DFT** computations & **MS** & **Isotopic labeling/replacement** were required

EPR Spectrometer Upgrade

Double Resonance

ENDORⁿ Basic Principle

ENDOR Probehead & Spectra^o

ⁿ Electron Nuclear Double Resonance

º 🌗 🚳 🛃 D. M. Murphy & R. D. Farley, Chem. Soc. Rev. 2006, 35, pp. 249-268

🗞 🕼 Cooperation & Acknowledgements

• I. Starý 🐣

- T. Slanina 😤
- U. Jahn 🏞
- J. Michl 🐣
- M. Hocek
- P. Bouř 😤

TO BE CONTINUED ---