

Quantitative LC/MS on a triple quad

Karel Čížek | June 13, 2022

Photo of the instrument

QTRAP: Scheme of the instrument

Basic mode of operation for quantification

	Q1	Q3	Dwell time
1	453	254	20ms
2	685	885	20ms
3	453	254	20ms
4	396	274	20ms
5	1098	870	20ms
6	464	222	20ms
7	987	274	20ms
8	887	870	20ms

1

Identification of phytoprostanes in aged vegetable oil

Formation of phytoprostanes in aged vegetable oil

List of standards

16-F series

9-F series

* Individually prepared enantiomers were used, opposite enantiomers coeluted together.

Experimental conditions

LC-MS method

- Injection volume 10 uL
- Column: Kinetex C18 100 x 2.1 mm, 1.7μm
- Flow program 11.00 min Stop time: ☆ MPA: 0.1% FA/H₂O ٠ B.Conc A.Conc Time Flow A.Conc B.Conc B.Curve MPB: 0.1% FA/MeOH 100 ٠ 1 0.4000 70.0 30.0 0 80 2 1.50 0.4000 70.0 30.0 0 60 3 7.00 0.4000 35.0 65.0 0 % Diluent: 50% MeOH +0.1% FA ٠ 4 9.00 0.4000 35.0 0 65.0 40 5 10.00 0.4000 70.0 30.0 0 20 6 11.00 0.4000 70.0 30.0 0 7 0 0.00 2.20 4.40 6.60 8.80 11.00 min Compressibility settings - Autopurge settings 0.4000 mL/min Flow: 70.0 % A.Conc 0 B.Conc 30.0 % **B.Curve** Pressure limits 800 bar 0 bar Maximum: Minimum: Sample dissolution
- 1. Addition of 200 μL of 50% MeOH + 0.1% FA
- 2. Vortexing for 5 min
- 3. Sonication for 10 min
- 4. Filtration through Micro-Spin Filtration Tube at 14 000 g for 5 min

Detection of phytoprostanes in standard mixture

16-F and 9-F standard MIX (100nM of each compound)

Formation of specific and non-specific fragments

Characteristic fragmentation

Identification of phytoprostanes in walnut oil

50× diluted + 100 nM of each 16-F and 9-F standard

Content of phytoprostanes in aged vegetable oils

^{*a*}Levels shown $10 \times$ less to keep the scale.

2

Monitoring of nucleotides and dinucleotides in bacteria

Mixture of 20 compounds

RNA Caps: Ap₂₋₅A, Ap₃₋₅G, Gp₃₋₄G, m⁷Gp₃G

FAD, NAD, NADH, CoA,

AMP, ADP, ATP , GDP, GTP and IMP

Experimental conditions

- Column: iHILIC (P) Classic 100 x 2.1 mm, 5µm + pre-column ٠
- MPA: 10 mM CH₃COONH₄ / H₂O, pH = **9.0** + **5\muM medronic acid** ۲ MPB: 90% ACN + 5µM medronic acid
- Diluent: 10 mM CH_3COONH_4 or H_2O ٠

150 bar

Maximum:

Pressure limits

0 bar

Minimum:

Flow program Simple								
	Time	Flow	A.Conc	B.Conc	B.Curve			
1	▶	0.2000	0.0	100.0	0			
2	1.00	0.2000	0.0	100.0	0			
3	16.00	0.2000	66.7	33.3	0			
4	17.00	0.1000	66.7	33.3	0			
5	18.00	0.1000	100.0	0.0	0			
6	23.00	0.1000	100.0	0.0	0			
7	24.00	0.1000	0.0	100.0	0			
Compressibility settings								

Autopurge settings

0 -OH OH -N(CH₂)⁺

iHILIC[®]-(P) Classic

Charge Modulated Diol HILIC columns polymer based, 5 µm available in PEEK, stainless steel (SS), PEEK-lined SS (PEEK-SS) stable at basic pH with range pH 1-10 ultralow bleeding (www.hilicon.com)

Medronic acid as a mobile phase additive

Hsiao J.J. et al. Anal. Chem. 2018, 90, 9457–9464

Ap₅A: 100nM

Diluent: Matrix

Stationary phase of bacteria (E. coli) growth

Stationary phase of bacteria (E. coli) growth

3

Determination of targeted lipidoids

Structures of XMaNs – Adamante-based lipidoids

XMaN6 (C6)

Chemical Formula: C₁₀₃H₂₀₂N₆O₃ Exact Mass: 1571,58384 Molecular Weight: 1572,78800

MW

C5: 1530.7 C6-lin: 2053.6 C6-lin-est: 2160.8 NH-C6-5-6: 1668.5 Et7: 2005.2 Met7: 1921.0 MC3:641.6 SM-102: 710.7

Hejdankova Z. et al., Adv. Funct. Mater. 2021, 2101391

XMaN6 (C6) at ESI

Experimental conditions

Column: ACQUITY BEH C18 1.7μm 50 x 2.1 mm + pre-column

MIX 9: 100 nM

Determination of Met7 and C6 in mouse liver

Thank you for your attention !