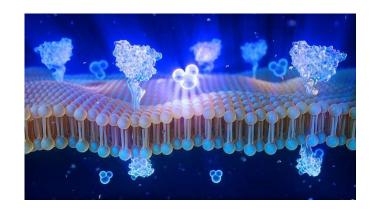


Workflow and applications in lipidomics

RNDr. Vladimír Vrkoslav, Ph.D.


Lipids

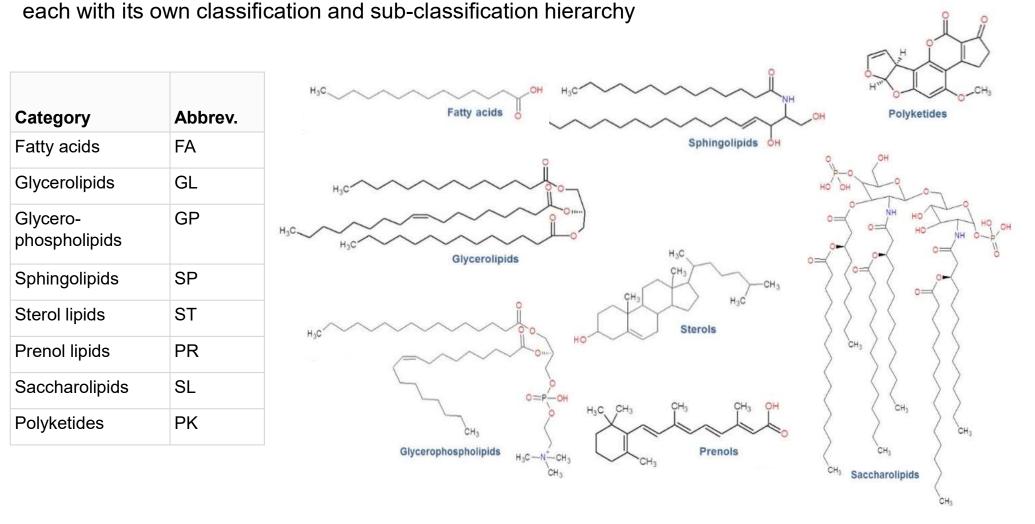
Definition:

- hydrophobic or amphiphilic molecules, soluble in nonpolar solvents
- hydrophobic or amphipathic small molecules that originate entirely or in part by carbanion-based condensations of thioesters and/or by carbocation
 based condensations of isoprene units. *J. Lipid Res.* 50: S9-S14, (2009)

Funcions:

- storing energy
- signaling processes
- structural components of cell membranes

\rightarrow crucial role in many biological processes


imbalance in homeostasis can lead to serious conditions (chronic inflammation, diabetes, neurodegenerative diseases,...)

IOCB Prague

https://www.lipidmaps.org

Lipid Classification System

Eight lipid categories:

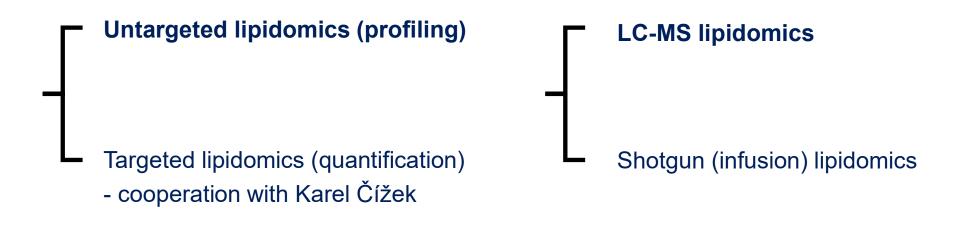
IOCB Prague

Mass Spectrometry Reviews, Volume: 40, Issue: 3, Pages: 162-176, DOI: (10.1002/mas.21627)

https://www.lipidmaps.org/

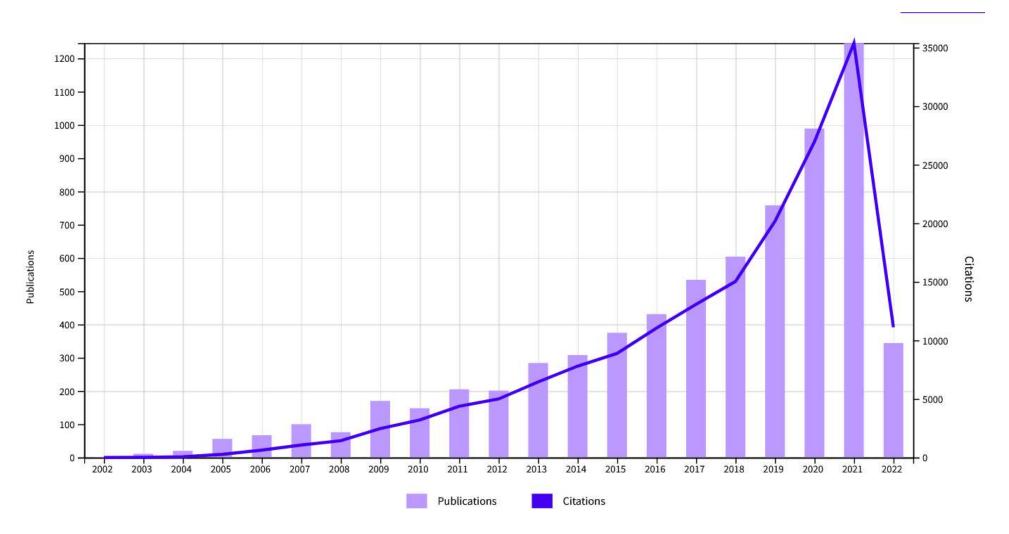
LMSD: Lipid classification search results

Show only primary classification


Show only secondary classifications

Triacylglycerols [GL0301]

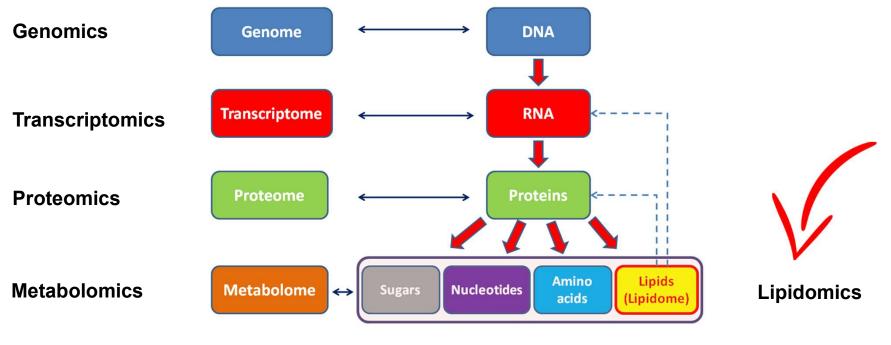
LM_ID	Common Name	me Systematic Name		Formula	
LMGL03010007	TG(12:0/16:0/18:0)	1-dodecanoyl- 2-hexadecanoyl- 3-octadecanoyl-sn- glycerol	TG 46:0	C ₄₉ H ₉₄ O ₆	
LMGL03010001	TG(16:0/16:0/16:0)	1,2,3-trihexadecanoyl-sn- glycerol	TG 48:0	C ₅₁ H ₉₈ O ₆	
LMGL03010002	TG(18:0/18:0/18:0)	1,2,3-trioctadecanoyl-sn- glycerol	TG 54:0	C ₅₇ H ₁₁₀ O ₆	
LMGL03010003	TG(20:0/20:0/20:0)	1,2,3-trieicosanoyl-sn- glycerol	TG 60:0	C ₆₃ H ₁₂₂ O ₆	
LMGL03010004	TG(16:0/16:0/18:0)	1,2-dihexadecanoyl- 3-octadecanoyl-sn- glycerol	TG 50:0	C ₅₃ H ₁₀₂ O ₆	
LMGL03010005	TG(16:0/16:0/18:1(11E))	1,2-dihexadecanoyl- 3-(11E-octadecenoyl)-sn- glycerol	TG 50:1	C ₅₃ H ₁₀₀ O ₆	
LMGL03010006	TG(16:0/16:0/18:1(9Z))	1,2-dihexadecanoyl- 3-(9Z-octadecenoyl)-sn- glycerol	TG 50:1	C ₅₃ H ₁₀₀ O ₆	


Lipidomics

- complete set of lipids produced in a given cell or organism = lipidome
- lipidomics the study of the structure and function of the "complete" set of lipids
 - analysis of lipidome; study of pathways and networks in biological systems
- mass spectrometry is the widely used analytical technique for lipidomics
 - We have developed an untargeted LC-MS method and offer cooperation

Lipidomics on WOS

"Lipidomics" 5/31/2022

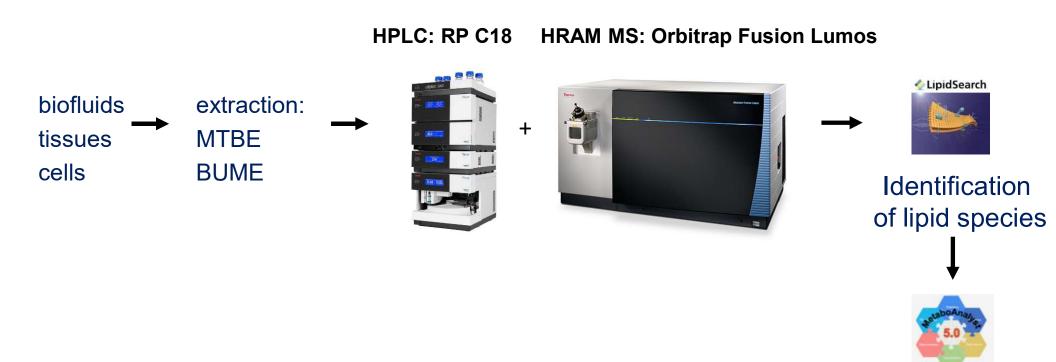


IOCB Prague

https://www.lipidmaps.org

Omics technologies

• identification, characterization, and quantification of pools of biological molecules


Lipidome - subset of the metabolome

Untargeted lipidomic workflow

Sample preparation

Data acquisition

Basic statistic

HPLC method

Thermo Scientific[™] Dionex[™] UltiMate[™] 3000

Mobile phase:

A 60:40 (v:v) acetonitrile / water **B** 90:10 (v:v) IPA / acetonitrile

• 10 mM ammonium formate, 0.1% formic acid

HPLC method

Thermo Scientific[™] Dionex[™] UltiMate[™] 3000

Mobile phase:

A 60:40 (v:v) acetonitrile / water **B** 90:10 (v:v) IPA / acetonitrile

• 10 mM ammonium formate, 0.1% formic acid

Column:

Waters ACQUITY UPLC BEH C18 (2.1 x 100 mm, 1.7 μ m) operated at 45 °C

• flow rate of 180 µL/min

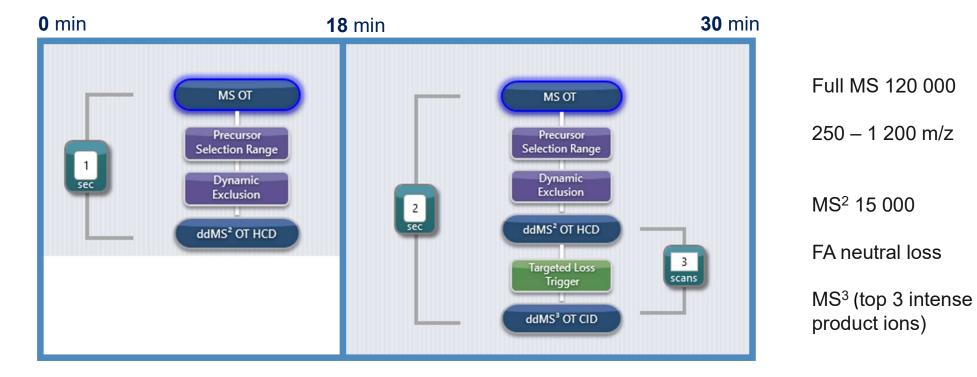
HPLC gradient

Time	% A	% B
0	70	30
2	57	43
2.1	45	55
12	35	65
18	15	85
20	0	100
25	0	100
25.1	70	30
30	70	30

Mass spectrometry

Thermo Scientific[™] Orbitrap Fusion[™] Lumos[™]

- HRAM mass spectrometer (high resolution, accurate mass)
- ionization H-ESI (heated electrospray)
- data-dependent acquisition (DDA) mode
- Positiv and negative mode
 - separately (in two chromatographic run) more identified lipids (60 min per sample)
 - polarity switching (30 min per sample)



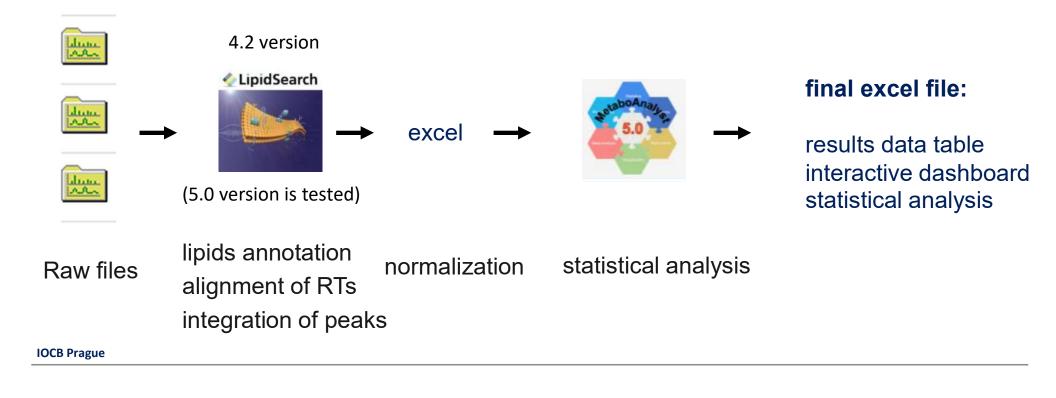
MS method: negative mode

HPLC-MS run time

MS method: positive mode

HPLC-MS run time

HPLC-MS


Base peak chromatograms of positive and negative ion modes of egg lipid extracts

Data analysis

Identification based on:

- retention time
- exact mass of molecular ions (molecular adduct) = elemental composition
- product ion spectra (MS/MS spectra) + exact mass of product ion = elemental composition of product ion

Identification – specific fragments

Lipid Class Specific Fragments

Positive ion mode

Lipid classes	Prec. ion	Fragment Neutral loss	Annotation Level	Example (QQQ)	Remark		 Identification level 1) Lipid class + fatty acids 2) Lipid class + sum of CN:DB in fatty acids (B) 						
PC	[M+H] ⁺	<i>m/z</i> 184.0733 NL 183.0661	Sum composition	Precursor <i>m/z</i> 746.6 PC 0-34:1* PC 33:1**	1								
PE	[M+H] ⁺	NL 141.0191	Sum composition			r Specie			tandards-init	tiative.org			
MMPE [M+H] ⁺	[M+H] ⁺	NL 155.0347	Sum composition	Lipid Molecular Species Fragments Positive ion mode									
				Lipid classes	Prec. ion	c. Fragment Neutral loss		Annot. Level	Example	Remark			
DMPE	[M+H] ⁺	NL 169.0503 m/z 170.0576	Sum composition	Glycerophospholipids	[M+H]+	NL -FA X1:Y1(+H NL -FA X2:Y2(+H NL -FA X1:Y1(-H)	10)	Molecular lipid species	PC 16:0_18:1	NL of fatty acid and			
PS	[M+H] ⁺	NL 185.0089	Sum	1		NL -FA X2:Y2(-H)				ketene			
			composition	LPX	see respective diradyl lipid c		class	Molecular lipid		1			
PG [M+NH ₄]		NH ₄] ⁺ NL 189.0402	Sum composition				species		LPC 0-16:0* LPC 15:0**	1			
PA	[M+NH4] ⁺	NL 115.0035	Sum	Cer HexCer Hex2Cer	[M+H] ⁺	Long chain base s ions: e.g. <i>m/z</i> 26 d18:1 backbone		Molecular lipid species	Cer d18:1/16:0				

- acids (A)
- of ds (B)

Example results - data table

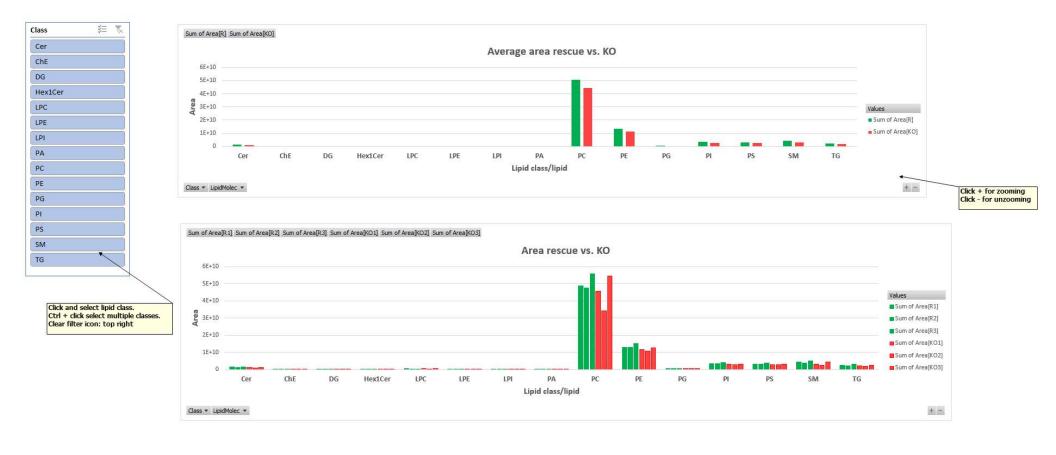
• cell samples

KO cells (gene deletion)

rescue cells (gene re-expression)

(group of Kvido Stříšovský)

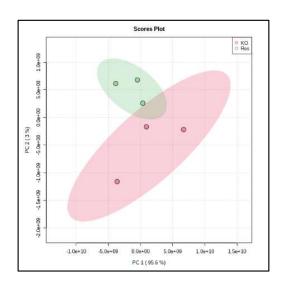
Peak area (for relative

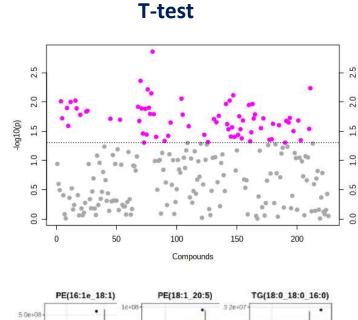

quantification)

A	В	c	D		E F	G	H	HII	J	к	L	м	N	0	P
1 Class	💌 Lipid	▼ FA	💌 FA Group Key	y 💌 Grad	e[R3] 💌 Grade[R2] 💌 Grade[F	R1] 💌 Grade[I	KO3] 💌 Grade[KO2]	Grade[KO1]	🔹 Area[R3] 💽	Area[R2]	Area[R1]	Area[KO3] 💌	Area[KO2] 💌	Area[KO1] 💌
2 Cer	Cer(d18:0_16:0)	d18:0_16:0	d34:0	В	В	в	В	В	В	5983000	4603041.837	5435991.523	4453689.057	3138750.271	4665605.924
3 Cer	Cer(d18:0_24:0)	d18:0_24:0	d42:0	С	В	В	C	-	120	1288000	979981.2925	1146226.517	1055302.275	744678.755	1062214.098
4 Cer	Cer(d18:1_16:0)	d18:1_16:0	d34:1	А	А	А	A	A	А	149400000	112513333.3	120427365.2	121377175.9	92670358.31	119058380.2
5 Cer	Cer(d18:1_22:0)	d18:1_22:0	d40:1	В	A	A	А	B	В	113600000	89551428.57	102195659.5	68986468.04	50680738.33	63172358.46
6 Cer	Cer(d18:1_24:0)	d18:1_24:0	d42:1	A	A	А	А	A	А	372500000	280955306.1	314844387.9	219941711.8	158726348.2	212804424.4
7 Cer	Cer(d18:1_24:1)	d18:1_24:1	d42:2	A		oftware gradin		tification:	A	329200000	267424183.7	280588402.8	309450848.7	190925371	264333108.4
8 Cer	Cer(d18:1_26:1)	d18:1_26:1	d44:2	С				and class were	В	8438000	7276463.605	6650893.523	9586533.044	5549750.271	8122547.807
9 Cer	Cer(d18:2_16:0)	d18:2_16:0	d34:2	в	identified con				В	24360000	20378690.48	21992505.93	24475698.81	18211208.83	24254641.92
10 Cer	Cer(d18:2_23:0)	d18:2_23:0	d41:2	В	Grade B : Lipi were identifie		ss and some f	atty acid chains	С	7240000	5731455.442	6705670.397	4139362.225	3076795.512	4512827.897
11 Cer	Cer(d18:2_24:0)	d18:2_24:0	d42:2	А		The second second second second second second	ss or fatty aci	d was identified.	A	155300000	126454489.8	141684062.4	106575081.3	72705218.96	102876565.4
12 Cer	Cer(d18:2_24:1)	d18:2_24:1	d42:3	А					В	140700000	116859693.9	127785452.7	132696424.7	86579594.64	124934458.2
13 Cer	Cer(m18:1_24:0)	m18:1_24:0	m42:1	-	В	-	В	В	C	5941000	4520214.966	5404924.042	3286935.717	2378713.717	3207434.571
14 Cer	Cer(t18:0 16:0)	t18:0 16:0	t34:0	В	В	В	B	В	В	29910000	23691765.31	24518782.64	25955908.27	19083811.07	23115586.8

Lipid identification

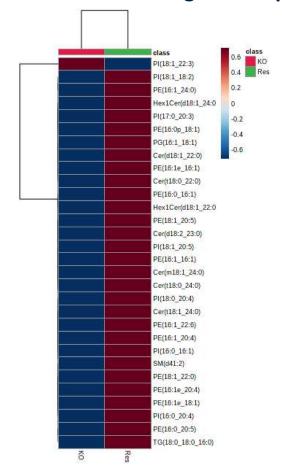
IOCB Prague

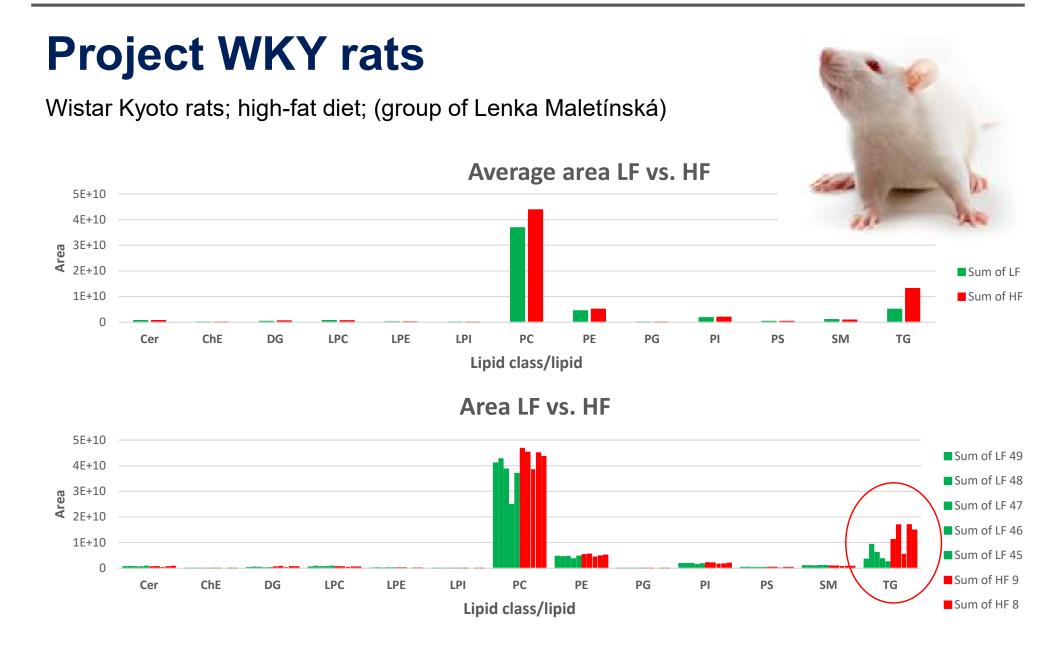

Example results - interactive dashboard



IOCB Prague

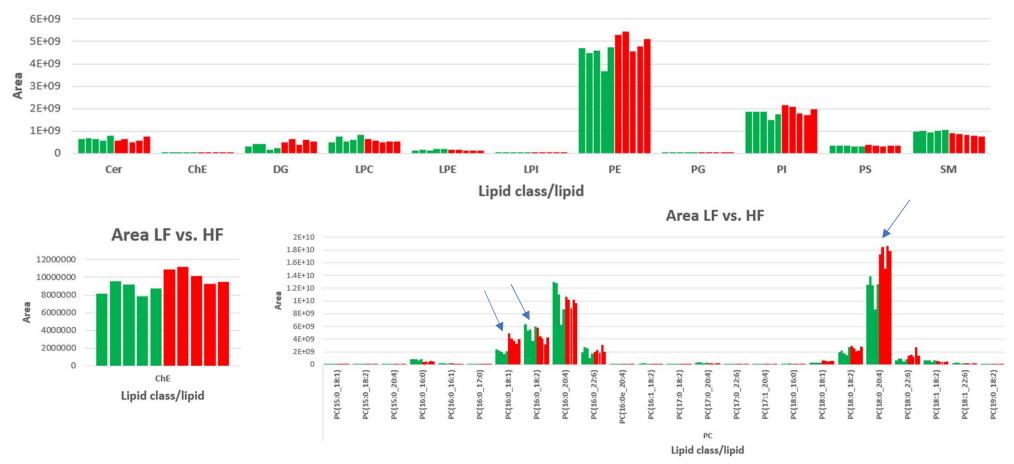
Example results - statistical analysis

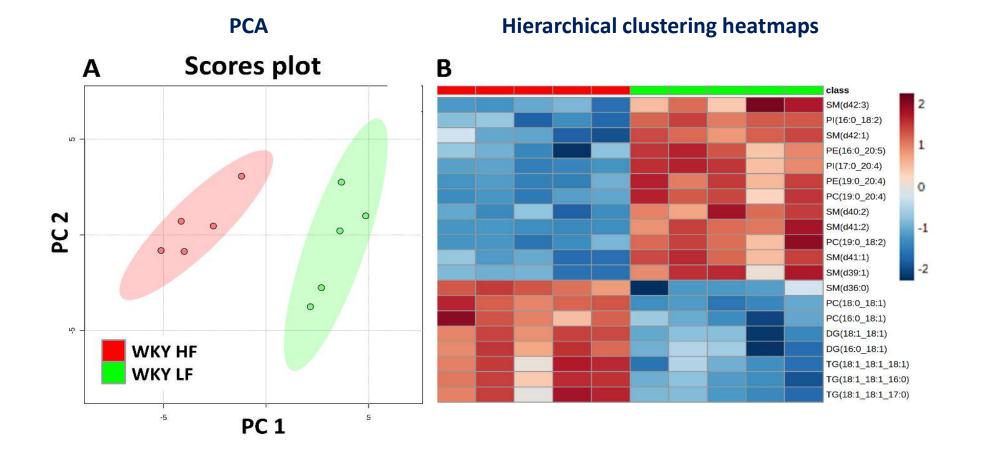

PCA

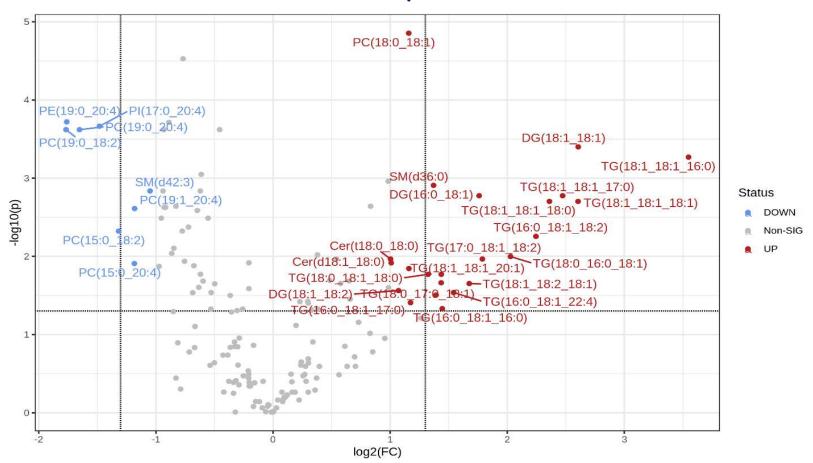


5.0e+08 4.5e+08 6.0e+08 3.5e+08 3.5e+08 4.0e+08 4.0

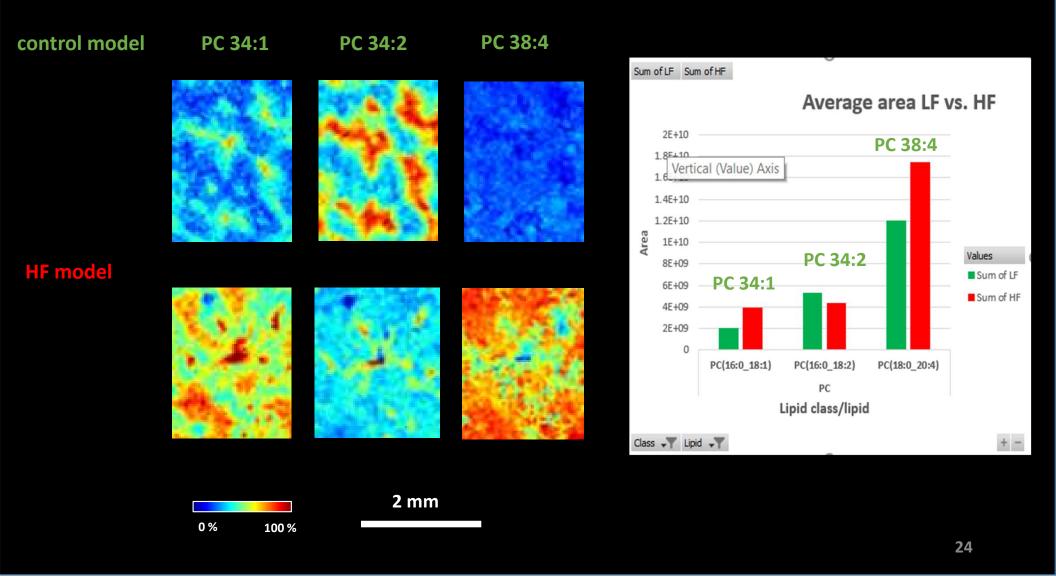
Hierarchical clustering heatmaps




IOCB Prague



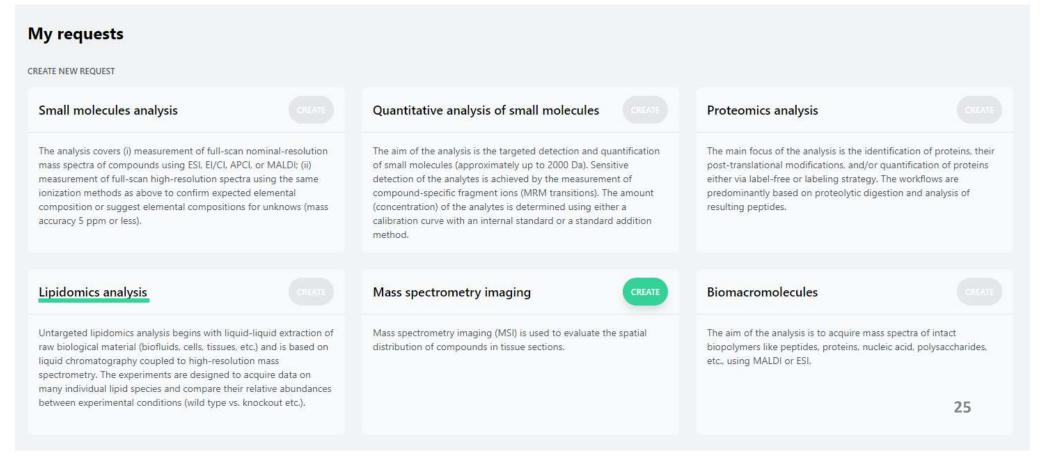
Example results - statistical analysis



Example results - statistical analysis

Vulcano plot

WKY rats



IOCB Prague

New REQUEST

How can apply for lipidomic analysis

• Contact Vladimír Vrkoslav, Štěpán Strnad and discuss your project

IOCB Prague

Lipidomic project in reQest 2

What lipidomic analysis do you want to perform?

) All detectable lipids in my sample

Selected lipid species or classes

i Note

Identification and relative quantification of all identified lipids. Possible lipid classes:

- PA phosphatidic acid
- PS phosphatidylserine
- PC phosphatidylcholine
- DAG diacylglycerol
- PE phosphatidylethanolamine
- TAG triacylglycerol
- PG phosphatidylglycerol
- SM sphingomyelin
- PI phosphatidylinositol
- CE cholesteryl ester
- LPA lysophosphatic acid
- LPS lysophosphatidylserine
- LPC lysophosphatidylcholine
- PCO ether-linked PC
- PEO ehter-linked PE
- LPE lysophosphatidylethanolamine
- LPG lysophosphatidylglycerol
- LPI lysophosphatidylintositol
- CER ceramide
- CL cardiolipin
- Sph sphingosin
- HexCER hexosylceramide

Set in database - Identification depends ne on relative abundance, sensitivity of the ionization,... What form are your lipids in? 📎

Biological fluid

What kind of biologi

Select...

What metrics should

Select...

What form are your lipids in? 📎

Cells

What type of cells? 🦻

Select...

() You have to choose an option

What solvent is the sample suspended in? 🦻

Select...

() You have to choose an option

Does the sample buffer contain detergent?

🔾 No

O Yes

amine

Lipidomic project in reQest 2

What form are your lipids in? 📎

Tissue

What kind of tissue? 📎

Select...

You can either select one of the p

Adipose tissue

Brain

Kidney

Liver

How many individual samples do you provide?

Up to 10 samples, all samples we measure usualy two times

Note
 We need at least 5mg of sample

Normalization !

- Cells
 - number of cells
 - total protein concentration
- Tissues
 - mass
 - protein concentration

Acknowledgment

The work was supported from European Regional Development Fund; OP RDE; Project: "Chemical biology for drugging undruggable targets (ChemBioDrug)" (No. CZ.02.1.01/0.0/0.0/16_019/0000729)

RNDr. Vladimír Vrkoslav, Ph.D.; Ing. Štěpán Strnad, Ph.D.

IOCB Prague Flemingovo nám. 542/2 166 10 Praha 6 Czech Republic

Thank you for your attention.